The Crystal Structure of Tetraindium Tritelluride

By J.H.C. HOGG AND H.H. SUTHERLAND

Physics Department, The University of Hull, Hull HU6 7RX, England

(Received 18 June 1973; accepted 19 June 1973)

The crystal structure of tetraindium tritelluride (In₄Te₃) has been determined from X-ray photographic data taken with Mo K α radiation and refined to a residual of 0.08. The phase, which is shown to be isomorphous with In₄Se₃, is orthorhombic, space group *Pnnm*, with *a*=15.630, *b*=12.756, *c*=4.441 Å, *Z*=4. The material is composed of two centrosymmetrically related interlocking continuous sheets of atoms running perpendicular to **a**. These are constructed of interlinked five-membered indium-tellurium rings forming chains parallel to **c**, the chains being cross-linked by strongly bound In–In–In units forming, in ionic terms, the homonuclear triatomic cation (In₃)⁵⁺.

Introduction

In their review of the phase diagram of the binary system In-Te Grochowski, Mason, Schmitt & Smith (1964) found no evidence for the existence of the phase In₂Te reported by Klemm & von Vogel (1934). Instead they proposed the existence of In₉Te₇. In a recent investigation of the In-Se system (Hogg, Sutherland & Williams, 1971), the phase reported by Man & Semilitov (1965) as In₂Se was shown as a result of structural analysis to be In₄Se₃, a finding confirmed by Likforman & Etienne (1972). This phase has unit-cell parameters almost identical with those quoted by Man & Semilitov for In₂Se and very similar to those for In₂Te given by Schubert, Dörre & Günzel (1954). In view of this a full structural investigation was undertaken by the authors which showed the existence of a phase In₄Te₃, isomorphous with In₄Se₃, whose parameters match those given for In_2Te . Further, the formula In_4Te_3 more closely agrees with the composition of 43% Te reported for the phase by Grochowski et al. (1964) than the formula In₉Te₇ which they proposed. It is concluded that the correct formula for In_2Te and In_9Te_7 is In_4Te_3 .

Preparation of the phase

Mixtures of indium and tellurium in the correct stoichiometric proportions to produce In_2Te and In_9Te_7 were placed in sealed evacuated tubes and heated to 600°C. This temperature was maintained for 24 hr whilst the tubes were shaken to ensure mixing; subsequently the samples were subjected to directional freezing over a period of 3 days to a temperature of 400 °C at which they were held for two days before cooling. The resultant boules were, in both cases, inhomogeneous but both contained black shiny needle crystals very similar in appearance to crystals of In_4Se_3 . Several crystals were extracted and subsequent structural investigation proved them to be In_4Te_3 .

Unit cell and space group

Unit-cell parameters were obtained by the method of Farquhar & Lipson (1946) with Cu $K\alpha$ radiation, wave-

lengths $K\alpha_1 = 1.54051$ and $K\alpha_2 = 1.54433$ Å. The cell is orthorhombic with a = 15.630 (3), b = 12.756 (3) and c = 4.441 (2) Å. These compare with the parameters given by Schubert, Dörre & Günzel (1954) for In₂Te a = 15.35, b = 12.62, c = 4.46 Å.

The space group indicated by systematic absences is either *Pnnm* or *Pnn2*. As a result of refinement the correct space group emerged as *Pnnm* (No. 58). There are four formula units per unit cell giving a calculated density of 6.32, a figure which proved impossible to check experimentally due to the exceedingly small amount of the pure material which could be isolated.

Structure determination

1754 reflexions, of which 687 were recorded as zero, were collected from Weissenberg photographs taken about c with multiple-film packs and Mo $K\alpha$ radiation. Reflexion intensities were measured with a Joyce-Loebl flying-spot integrating densitometer. Very weak reflexions were measured visually, and the two sets of data placed on the same scale by measuring with the densitometer the more intense reflexions of the calibrated scale used for visual estimation. Data were corrected for Lorentz and polarization factors and, in the case of visual data, for spot elongation on upper layers. No absorption correction was made since the dimensions of the crystal, which was a needle of approximately circular cross-section, gave a μR value of only 0.4. Approximate values of absolute scale and temperature factors were determined by Wilson's (1942) method. Interlayer scaling was achieved through common reflexions on precession photographs and final scaling was carried out during the least-squares refinement.

The overall intensity data bore a remarkable similarity to those of In_4Se_3 as did the Patterson projection down **c**. The similarity in unit-cell parameters has already been remarked upon. In view of this the obvious starting point for refinement was with the atomic coordinates taken from In_4Se_3 . During the refinement it became clear that because of the proximity of indium and tellurium in the periodic table it would not prove possible to identify atom types from the X-ray data. At this stage it was assumed that the telluride and selenide were isomorphous and on this basis refinement of positional coordinates and anisotropic thermal parameters by block-diagonal least squares with the 1067 observed reflexions proceeded very rapidly. Refinement ceased at R = 0.08, at which point parameter shifts were negligible. Packing and bonding considerations confirmed the choice of atom types. The weighting scheme employed was

 $w = 1 / \left[2|F_{\min}| + |F_o| + \frac{2|F_o|^2}{|F_{\max}|} + \frac{5|F_o|^3}{|F_{\max}|^2} \right].$

Ten reflexions were omitted from the refinement due to suspected extinction but were included in the final R. The refinement, which was carried out with scattering factors for indium and tellurium taken from *International Tables for X-ray Crystallography* (1962), took place in space group *Pnnm*. Subsequent refinement in *Pnn2* also ceased at R=0.08 at which stage the z parameters did not differ significantly from 0 and $\frac{1}{2}$. It was therefore concluded that the space group was *Pnnm* with all the atoms lying on the mirror planes.

Observed and calculated structure factors are given

Table 1. Observed and calculated structure factors

Data in each block are arranged in columns of h, F_{a} and F_{c} .

C 0 10 00 4 100 400 6 203 310 0 203 310 10 103 137 12 44 50 14 45 44 16 156 162 18 0 23 20 147 133	1 144 135 1 144 135 2 189 172 3 320 172 4 92 80 6 92 80 6 64 64 7 124 194 124 194 344 32 54 34 54 43	14 6 6 15 8 12 16 8 28 17 8 28 17 8 28 18 77 91 E=14 Le 8 8 227 231 1 0 37 2 8 27 3 89 87	7 43 61 8 70 53 9 161 163 10 167 156 11 86 77 12 266 270 13 71 85 14 0 19 15 0 12 16 48 43 17 70 77	16 44 36 17 8 3 18 67 7 19 0 9 20 9 24 21 37 33 22 108 112 5 9 4 25	K=14 L= 1 1 P6 P4 2 P7 P1 3 53 S6 4 0 34 5 0 34 6 44 55 7 0 22 8 0 27 9 44 55 10 0 27	xn 2 1 2 0 0 17 1 16 8 2 71 54 3 185 121 4 60 57 5 123 121 4 141 135 7 213 220 8 80 9 7 213 235	6 176 162 7 104 76 8 43 43 9 218 318 10 30 31 11 48 71 12 0 25 13 73 75 14 0 18 15 67 82	4 175 140 5 110 104 6 75 72 7 0 13 8 0 27 9 115 120 0 0 18 1 8 11 1 8 11 2 73 72 3 0 16	22 0 0 13 0 11 14 0 0 15 61 51 15 61 51 1 23 20 1 23 20 7 3 405 439	1 4 4 2 34 4 1 73 4 1 73 4 1 73 4 1 73 4 1 73 1 1 95 1	0 43 64 1 0 25 2 118 117 3 49 42 4 46 70 3 0 11 4 6 31 7 0 4 8 8 24 9 52 80 9 32 80	4 0 22 1 5 0 34 1 6 47 51 3 7 39 34 8 0 23 5 0 4 67 5 0 4 67 6 4 67 6 4 67 6 6 8 7 8 8 7 8 8 8 0 23 8 0 23 8 0 24 8 0 24 8 0 24 8 0 24 9 25 9 24 9 25 9 2	
3 36 45 11 4 99 90 13 5 121 132 14 4 30 32 13 7 143 193 14 8 98 105 17 9 242 276 18 10 172 174 19 11 104 112 12 205 224	0 28 91 85 0 28 35 90 0 3 117 130 8 10 0 10 117 130	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 0 15 19 37 45 20 0 37 21 0 13 22 74 78 K= 6 1= 1 4.57 28 2 123 109 3 151 134 4 105 149	2 133 120 3 357 340 4 144 130 3 30 27 4 94 43 7 110 104 8 91 82 9 113 103 10 0 8 11 0 9 12 149 149	11 35 44 31 12 44 31 13 0 8 14 0 0 15 128 123 16 0 9 17 0 12 E=15 Le 1 0 223 222 1 0 20	10 0 11 11 0 24 12 43 52 13 44 47 14 39 63 15 102 103 16 104 104 17 0 5 18 0 13 19 45 44 20 0 8	17 0 15 18 47 45 19 119 118 20 0 0 21 0 39 22 0 18 23 0 12 24 0 9 25 81 85 5 81 85 5 8 Le 2	15 0 14 16 0 21 17 0 16 18 77 83 19 72 61 10 72 61 10 72 61 11 0 36 2 0 217 3 76 78	10 74 4 143 176 7 31 33 8 124 140 9 93 99 10 47 61 11 76 75 12 77 62 13 132 136 14 47 49 13 132 136 14 67 49	5 0 3 6 179 137 7 0 26 9 46 51 10 170 172 11 6 13 12 151 146 13 73 71 14 35 40 15 93 93	x=12 L= 3 1 67 2 68 3 73 4 91 5 0 4 178 174 175 4 50 4 50 4 50	10 10 4 0 34 3 58 44 4 0 34 5 58 44 4 0 36 7 0 1 8 60 68 7 0 48 8 602 68 9 602 60 8 602 60	7 31 75 12 8 67 8 44 43 13 7 7 7 8 44 13 15 7 7 10 9 11 13 7 7 10 10 10 9 11 15 7 7 10
T6 54 49 1 13 0 25 2 14 17 0 32 17 0 12 3 18 187 145 4 19 101 101 5 19 101 101 5 10 5 9 2 115 78 10 3 166 140 10	95 69 0 14 245 233 0 16 104 110 180 169 249 244 73 39 254 244 48 48 98 95	10 127 141 1 0 7 2 39 58 3 92 90 4 60 51 5 0 16 6 77 74 7 0 10 8 0 39	6 213 202 7 144 139 8 107 99 9 198 202 10 78 76 11 159 171 12 165 166 13 90 82 14 34 48 15 238 238 14 34 238	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 6 10 23 6 9 24 6 25 25 40 72 1 6 13 3 360 362 4 113 102	a 36 ¹ 339 1 64 60 2 0 11 3 214 197 4 0 14 5 116 90 6 160 147 7 224 209 8 54 49 9 215 215 10 36 43	12 12 5 5 6 132 7 70 8 0 9 0 410 0 11 0 12 0 13 74 14 0 15 78	16 60 63 17 78 74 18 0 20 19 100 93 20 0 13 21 0 17 22 0 19 23 35 44 K= 2 L= 3 1 0 5	10 0 4 17 0 30 18 0 4 19 0 25 20 0 6 21 40 54 22 83 74 23 0 10 E= 7 L= 3	77 70 1 0 8 2 15 15 3 0 30 4 0 34 5 0 29 4 50 52 15 0 19 16 0 19 18 0 19 10 0 2	4 49 31 4 6 143 222 4 133 155 6 85 90 2 31 25 4 37 39 6 122 115 8 0 14 20 95 85 22 60 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
- 10 7 126 12 5 161 136 13 7 2.4 2.6 14 7 2.4 2.6 15 4 114 113 16 9 233 2.60 17 10 6 14 11 34 34 12 65 63 6 11 46 52 73 2 14 62 73 2	0 39 40 39 0 4 174 186 93 84 0 40 145 141 104 178 127 110	9 77 81 K=16 L= 0 0 172 171 1 0 18 2 0 5 3 143 163 4 0 16 5 0 7 8 0 27 7 103 104	17 0 34 18 0 2 19 72 43 20 0 23 21 100 104 22 81 86 1 211 176 2 214 213	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 7 7 7 14 47 42 15 0 28 15 0 40 2 71 63 3 0 21 4 0 2 5 0 38 6 155 152	6 34 34 7 183 182 8 98 93 9 231 247 10 59 55 11 0 26 12 166 180 13 46 51 14 43 35 15 67 66	11 04 02 12 0 34 13 41 49 14 0 4 15 159 164 16 83 77 17 0 36 18 0 3 19 0 18 L= 9 L=	131 127 17 0 25 1 0 25 2 58 50 3 91 80 4 62 45 5 0 16 6 68 65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 17 2 0 21 3 69 59 4 138 128 5 67 64 6 266 262 7 78 70 8 0 26 9 0 14 10 81 78	21 0 0 22 80 83 0 0 36 1 64 56 2 0 33 3 152 130 4 106 98 5 0 12	E 1 0 14 2 10 18 14 3 44 37 1 4 20 32 1 5 45 48 1 6 0 14 1 7 84 95 3 8 53 58 9 137 10 87 95 1 1	8 4.6 4.3 1.6 8 3.2 9 4.63 1.6 1.6 3.4 1.6 3.4 11 6 3.3 1.6 0 4. 12 0 2.6 1.7 9.2 3.4 13 6.6 1.8 0 4. 14 0 4 0 4. 15 0.2 1.7 9.2 3.4 14 0 4 0 4. 15 0.2 1.5 5.6 1. 14 0 4 1. 5.5 4.0 15 0.2 1.5 5.6 1. 5.5 4.0 15 4.3 .4 3.4 .4 1.5 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n 19 1n1 145 4t an 40 55 1.10 77 111 106 4n 3t 7 3e 21n 22n 4t 45 57 52	a 101 102 9 137 132 10 0 47 10 0 67 2 0 67 3 0 53 5 0 6 5 0 6 5 0 5	3 500 633 4 37 30 5 128 113 6 91 85 7 34 39 8 44 32 9 0 24 10 86 85 11 71 73 12 0 14 13 158 167	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 106 116 8 0 15 9 42 69 10 0 11 11 0 20 12 72 77 13 121 108 14 0 10 15 0 25 re17 := 1	17 74 67 18 80 80 19 45 60 20 0 31 21 0 38 22 0 25 23 0 25 23 0 23 24 0 31 25 120 110	2 153 148 3 112 101 6 0 18 5 135 124 6 54 48 7 45 46 8 71 49 9 102 93 10 0 23 11 0 32	8 0 35 9 66 73 10 31 38 11 0 33 12 79 73 2 154 151 1 0 16 2 0 5 3 150 147	13 0 14 14 0 32 15 0 32 16 0 7 17 0 23 18 0 25 19 0 24 20 0 23 21 0 8 22 111 104 23 0 12	12 179 177 13 51 55 14 81 85 15 64 61 16 0 20 17 0 13 1 54 61 2 206 198 1 54 61	7 0 35 8 25 62 9 0 3 10 35 36 11 34 36 11 34 36 12 123 122 13 48 48 14 0 23 15 0 18 16 43 47 16 21	11 32 131 135 13 91 98 14 25 30 15 0 24 16 46 47 17 0 3 18 122 122 19 69 87 20 0 7 21 0 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7 224 227 13 8 125 111 16 9 253 263 17 10 A4 47 16 11 35 535 12 255 209 1 13 50 329 1 14 0 40 17 15 81 72 2 16 87 A4 3 16 87 A4 3 17 75 76	6 0 26 0 1 60 0 19 5 2 3 03 1010 10 1024 378 1024 378 1024 378 1024 378 1024 378 1025 36 104 173 107 98	7 0 13 3 0 30 9 108 123 10 110 113 t=18 L= 3 0 165 175 c=20 L= 0 0 85 139	14 86 76 15 0 9 10 0 52 17 0 44 18 0 35 19 157 147 20 0 1 21 0 1 22 56 62 x= 6 L= 1	22 n 16 x=11 L= 1 0 213 209 1 141 129 2 1 1 129 3 180 171 4 92 87 5 52 52 6 263 251 7 48 47	1 1 16 2 0 27 3 0 17 4 81 73 5 44 45 6 130 129 9 0 24 10 0 24 10 0 25 11 47 55	c 4 Lo 2 0 330 586 1 192 148 2 142 126 3 107 148 4 86 79 5 0 18 6 392 419 7 49 43 9 236 236	13 0 37 14 44 47 15 0 22 16 40 36 17 0 10 18 99 96 19 61 59 K=10 Ls 2 0 328 335 1 131 135	6 0 13 3 0 8 6 0 23 7 100 93 8 90 91 9 135 120 10 0 24 11 44 43 12 0 6 Fall 18 2	E= 3 L= 3 0 185 164 1 50 36 2 72 69 3 269 258 4 171 158 5 61 35 6 154 141 7 46 41 8 60 37	4 0 6 5 60 33 6 284 280 7 0 26 8 69 62 9 90 91 10 0 8 11 0 34 12 86 90 13 0 26 14 0 16	18 0 34 19 75 71 20 0 17 k+14 L= 3 1 77 72 2 80 73 3 39 62 4 0 21 5 0 24 6 42 43	E 2 1 6 0 15 24 1 15 12 2 57 13 3 108 96 4 34 33 5 70 70 6 82 85 7 135 145 4 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
18 102 00 19 55 74 0 614 73A 1 205 242 1 2 100 165 1 24 12 1 148 98 1 148 98 1 2 0 23 11 5 0 23 11 6 437 509		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 176 158 2 01 75 3 31 33 4 0 11 5 0 8 6 224 202 7 0 24 8 0 5 9 87 77 10 235 233 11 0 24	8 9 84 74 10 71 77 11 9 284 74 12 147 146 13 14 13 14 13 14 97 88 13 13 16 57 36 17 1 18 0 29	12 91 97 13 0 38 14 61 56 E 18 1 1 1 89 85 2 0 35 3 52 30 4 0 23 5 41 43 6 59 60	11 47 45 12 0 2 13 0 3 14 117 127 15 42 59 16 187 107 17 43 57 16 0 1 19 0 22 20 61 65 31 0 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 40 01 2 56 56 3 58 40 4 105 94 5 0 2 6 46 60 7 0 11 8 0 28 9 101 112 10 98 103 11 0 28	10 114 119 11 63 53 12 186 210 13 64 68 14 0 7 15 0 10 16 0 30 17 65 39 18 0 12 19 0 39 20 0 39	15 134 126 16 37 60 17 0 2 18 36 59 19 0 8 20 0 20 21 67 44 22 101 93 K= 9 L= 3 0 0 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 139 172 10 0 4 11 0 7 12 31 32 13 33 35 14 40 42 15 80 77 16 75 71 17 0 12 14 0 7 19 0 35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7 44 46 8 37 44 9 271 279 1 10 54 67 1 11 49 53 1 12 0 3 4 13 0 3 14 140 149 1 14 140 149 1 14 224 221 1 17 31 45	(a11 1 a 0 a 3 44 c 1 43 44 c 1 46 c 1 46 c 7 4 60 c 7 4 60 c 7 4 60 c 7 5 c 7 5 c 0 23 c 0 31 c 2 217	E 1 LE 1 3 417 404 4 96 96 5 109 112 0 208 245 7 38 52 8 167 211 9 124 137 10 53 50 11 102 104	12 104 102 13 04 86 14 44 51 15 125 111 16 0 2 17 68 39 18 8 2 19 0 35 20 0 9 21 79 46 22 100 88	10 74 81 20 8 30 21 8 9 22 8 34 K=12 L= 1 1 87 84 2 75 79 3 91 80 4 124 131 5 38 39	7 74 67 8 6 25 K 19 LE 1 0 77 81 1 0 9 2 0 28 3 153 151 4 52 40 5 52 53	K S L 2 0 0 0 1 130 151 2 0 10 3 104 89 4 110 100 5 24 26 6 0 2 7 127 132	13 0 32 14 0 8 13 0 16 14 150 131 17 0 4 K=11 L= 2 1 71 72 2 0 8 3 144 128 4 35 44	12 74 72 K=18 L= 2 0 162 159 1 67 63 2 0 5 3 0 36 6 6 3 3 0 0 6 54 66	21 0 0 22 71 03 23 0 22 24 54 51 25 0 8 xe 4 Le 3 1 0 9 2 84 75 3 94 87 1 0 87	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K=15 L=3 170 175 276 63 3 162 154 4 0 25 5 0 25 6 101 97 7 C 31	20 0 1 21 54 46 22 0 6 23 0 9 24 0 18 25 03 54 K* 3 L* 4 1 18 13 2 0 2	0 111 102 15 57 36 7 135 14 106 95 0 155 134 106 95 0 156 134 10 91 10 22 32 c 13 6 11 37 35 1 0 1 12 0 23 2 0 33 13 0 29 3 54 36 14 0 23 2 0 32 13 114 116 3 0 3
16 0 2 11 T 5 L 0 11 1 200 195 12 2 6 10 11 3 130 110 12 4 151 124 3 31 32 6 0 2 7 166 162 8 46 62	0 132 130 1 0 22 2 57 53 3 0 40 4 0 3 5 94 104 x=12 L= 0 0 52 38 1 161 139	13 140 173 14 59 40 15 0 26 16 82 84 17 96 95 18 0 27 19 120 114 20 0 23 21 0 21 22 0 22	E= 7 L= 1 0 167 136 1 0 24 2 39 33 3 106 93 4 190 171 5 111 99 6 367 346 7 112 99 8 44 38	6 232 218 7 117 131 8 75 44 9 100 93 10 101 87 11 0 9 12 198 189 13 22 46 14 38 42 15 6 55 16 69 66	K. 0 L. 2 0 7501017 2 0 15 6 80 70 6 200 361 8 219 257 10 127 135	9 0 30 10 174 174 11 80 79 12 129 136 13 0 47 14 0 20 15 0 2 16 32 38 17 35 39 18 202 202	5 0 24 6 73 66 7 0 23 8 0 23 9 194 193 10 132 134 11 0 19 12 44 44 13 6 37 14 0 2	x=19 L= 2 1 0 2 0 3 0 4 0 5 42 6 0 7 5 8 100 1 3	5 0 3 6 154 147 7 100 93 8 49 71 9 141 148 10 46 36 11 120 127 12 121 124 13 73 71 14 0 37	12 124 116 13 136 154 14 0 22 15 59 56 16 43 59 17 25 42 18 0 37 19 96 102 20 0 22	V 0 34 10 74 60 11 0 29 12 0 32 13 59 80 14 0 34 Ke16 Le 3 1 0 32 2 45 69 3 0 19	3 214 50 5 108 110 4 26 22 7 122 113 8 58 58 9 171 175 10 33 32 11 0 11 12 110 120 13 37 36	to P to to 2 54 1 0 0 10 30 54 1 0 0 10 30 47 2 05 03 10 30 47 3 05 03 10 30 47 4 0 13 53 10 10 40 5 83 83 10 100 10 4 6 0 24 1 4 11 4 13 7 34 24 1 4 11 4 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 149 175 4 9 11 5 8 19 6 3 11 7 65 68 8 9 26 9 392 300 8 8 21 1 94 77 2 0 21 3 0 46	C 2 L 1 2 P7 76 3 217 195 4 236 226 3 151 151 4 357 443 7 44 43 8 0 16 9 31 33 10 226 230	• 0 20 10 111 •7 11 0 50 12 224 222 13 74 75 14 103 105 15 87 83 16 0 23 17 0 15 18 0 19	17 0 12 18 0 23 19 0 3 20 0 13 21 0 0 22 104 102 Ke13 Le 1 0 36 67 1 76 77 2 40 44	14 58 56 16 145 148 18 0 20 20 130 118 22 78 74 Ke 1 Le 2 1 0 11 2 28 24	20 0 18 K 4 L 2 0 409 391 1 70 49 2 100 88 3 110 102 4 95 84 5 145 148 6 83 66	14 8 7 17 8 23 18 49 82 19 81 49 20 0 37 K=12 1= 2 0 37 1 130 137 2 19 17	2 44 54 3 101 95 4 0 10 5 0 39 6 87 80 K=24 10 2 6 87 80 K=24 10 2 6 87 80	14 40 48 17 0 23 18 0 1 19 38 49 20 0 17 21 9 85 22 74 70 23 0 3 24 0 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 0 2 5 0 2 6 117 124 7 84 0 8 0 12 9 43 34 10 0 12 11 0 14 12 50 45 13 85 88 14 0 9	15 47 32 16 41 36 17 51 67 18 71 64 19 62 56 20 0 21 21 6 30 22 0 16 23 0 16 24 0 22	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E & L & D & T 0 & 432 444 1 1 & 113 85 1 2 & 132 113 1 4 & 112 182 5 & 174 181 6 & 83 69 7 & 96 51 8 & 61 66 9 & 254 259	4 9 51 5 0 57 6 9 5 7 75 87 1 73 95 2 0 32 3 133 149 4 208 207 1 12	12 144 144 13 8 27 14 6 38 15 9 38 16 9 15 17 0 32 18 0 28 19 0 33 29 8 29 21 9 7	20 0 23 21 0 30 22 0 32 K ^a 8 L ^a 1 1 80 76 2 89, 277 5 70 84 6 9 9 3 86 77 6 376 376	3 141 147 4 128 122 5 0 13 6 109 99 7 47 44 8 43 55 9 8 12 10 40 45 11 41 43 12 149 150 13 49 56	3 50 41 4 72 65 3 93 97 4 28 25 7 144 159 8 91 87 9 214 236 10 148 144 11 80 94 12 187 194 13 152 153	8 43 58 9 229 226 10 76 86 11 0 13 12 37 43 13 91 97 14 0 18 15 0 3 16 119 120 17 42 47 18 0 0	3 137 133 4 8 10 5 0 18 6 0 11 7 76 43 8 0 23 9 249 246 10 0 18 11 43 48 11 43 48 13 0 49 13 0 49	2 0 0 3 48 57 4 0 0 5 124 144 6 0 0 7 107 119 8 0 0 9 48 67 11 8 21 19 0 0 12 0 0	0 72 44 1 107 117 2 155 142 3 438 434 4 19 20 5 93 43 6 50 49 7 27 24 8 0 21 9 33 27 16 44 43	12 6 16 13 60 54 14 0 9 15 121 106 16 8 29 17 0 4 18 41 43 19 8 3 20 0 26 311 Le 3	Kalf L= 3 0 0 12 2 0 21 3 0 15 4 61 61 5 0 35 6 106 107 7 0 9	23 77 83 6 387 875 1 114 111 2 73 71 3 47 87 4 44 51 5 0 10 4 244 244 7 37 33	0 244 247 5 0 70 70 2 44 247 5 0 72 2 0 117 4 5 4 4 5 1 116 17 5 4 4 4 5 3 116 17 7 4 7 5 9 23 4 2 1 7 40 45 9 4 4 7 40 45 10 7 7 9 0 33 4 21 7 40 45 10 7 9 0 3 1 9 0
18 192 PP 11 8 19 12 52 52 13 196 111 14 8 24 1 15 82 124 1 14 9 24 1 15 196 111 14 9 24 1 15 197 134 1 16 122 134 1 17 33 51 1	4 04 45 7 0 15 8 0 28 9 122 134 9 0 28 9 123 134 9 0 28 1 0 11 2 56 76 3 9 19	E 3 Le 1 0 237 241 1 110 74 2 124 113 3 370 347 4 234 228 5 93 25 6 170 177	45 42 9 117 114 10 0 20 11 18 41 12 104 111 13 0 33 14 9 17 13 13 13 14 9 17 13 173 1.3	14 0 24 15 0 23 16 54 40 17 0 30 18 55 41 19 44 84 20 0 23 21 0 23 22 0 7	14 34 41 15 8 23 16 172 145 17 172 145 18 172 145 19 6 91 20 8 11 21 6 9 22 8 16	10 0 47 20 0 42 1 119 13 2 214 137 2 214 137 2 214 134 3 214 134 4 33 77 3 74 37	13 55 53 17 60 74 18 0 3 18 0 4 18 0 4 1 75 82 2 0 24 3 131 131	13 184 181 14 8 8 15 228 243 17 8 34 17 8 34 18 8 4 20 8 9 21 141 133	11 40 30 12 0 6 13 130 134 14 30 33 13 4 7 16 8 20 17 37 30 18 0 26 17 10 121	0 134 163 1 102 92 2 0 18 3 143 136 4 73 67 5 42 43 6 197 197 7 8 18 9 51 52	9 0 21 10 0 27 11 4 43 12 82 82 12 0 31 R ⁺¹⁸ L ² 3 1 78 71 2 0 32 3 41 40	0 34 27 0 147 154 10 37 35 11 37 29 12 0 1 13 0 3 14 75 03 15 43 43 10 129 145 17 43 39	11 0 13 12 34 27 628 (14 4 13 8 27 628 (14 4 14 9 17 6 7 7 7 14 9 17 1 9 7 7 7 14 9 17 1 9 1 9 4 14 9 7 7 7 14 9 7 7 15 9 7 7 1

in Table 1; atomic coordinates and anisotropic thermal parameters with their standard deviations are quoted in Table 2. A projection of the structure viewed down c is shown in Fig. 1.

Table 3. Bond lengths (Å) and bond angles (°) with e.s.d.'s in parentheses

Atomic positions are as shown in Figs. 1 and 2. Subscripts 1 and 2 indicate atoms with $z = +\frac{1}{2}$ and $-\frac{1}{2}$ respectively

Table 2. Fractional coordinates $(\times 10^4)$ and anisotropic thermal parameters $(\times 10^4, Å^2)$ with e.s.d.'s in parentheses

Thermal	parameters	are defined	as
exp [– 2	$\pi^2 (U_{11}h^2a^{*2} +$	$-U_{22}k^2b^{*2}+$	$U_{33}l^2c^{*2} + 2U_{23}klb^*c^*$
			$+2U_{31}lhc^*a^*+2U_{12}hka^*b^*)$].

		x	у	z	
	In(1)	7154 (2)	3449 (2)	0	
	In(2)	8169 (2)	5248 (2)	0	
	In(3)	9640 (2)	6459 (2)	0	
	In(4)	4276 (2)	3981 (3)	0	
	Te(1)	9035 (1)	8605 (2)	0	
	Te(2)	7739 (1)	1374 (2)	0	
	Te(3)	4223 (1)	1481 (2)	0	
	U_{11}	U_{22}	U_{z}	33	$2U_{12}$
In(1)	225 (10)	130 (9)	162	(11)	55 (19
In(2)	242 (11)	179 (10) 253	(12)	124 (21
In(3)	195 (10)	139 (8)	140	(10)	34 (18
In(4)	307 (13)	244 (12) 293	(15)	7 (24
Te(1)	182 (8)	112 (7)	124	(9)	0 (16
Te(2)	172 (9)	132 (8)	124	(10)	-1(16
Te(3)	169 (8)	122 (8)	106	(9)	-41(15)

Description of the structure

The structure, which is essentially isomorphous with that of In_4Se_3 , is planar with all the atoms lying in sheets on $z=0, \frac{1}{2}$. An analysis of interatomic distances indicates that the material is composed of endless chains of atoms running parallel to **c** based on a fivemembered In-Te ring system [In(1), Te(2), In(2₁), In(3₁), Te(1₁)] the chains being cross-linked by strong In-In-In bonds [In(1), In(2), In(3)] to form a continuous sheet of atoms perpendicular to **a**. The structure contains two such centrosymmetrically related sheets (one of which is shown in Fig. 2) which interlock in the manner shown in Fig. 1. Bond lengths and angles within the sheets of atoms are given in Table 3. Other relevant interatomic distances including those between the centrosymmetrically related sheets are given in Table 4.

The strongly bound In–In–In group has almost exactly the same spatial configuration in both In₄Te₃ and In₄Se₃ (Hogg, Sutherland & Williams, 1973) with average bond lengths in the two materials of 2.78 and 2.77 Å and bond angles about the central atom of 158.6 and 157.8° respectively. In ionic terms, this grouping could be regarded as a triatomic cation $(In_3)^{5+}$ (Hogg, Sutherland & Williams, 1971) leading to the formula $In^+(In_3)^{5+}3Te^{2-}$. The structure, however, cannot be regarded as purely ionic, if only because of the low coordination number of all the atoms except In(4). This suggests a high degree of covalency within the $(In_3Te_3)^-$ group. Each tellurium atom is surrounded

Te(1)—In(3)	2.896(4)
In(3)— $In(2)$	2.770(4)
In(2) - In(1)	2.790 (4)
In(2)Te(3'')	3.537 (3)
In(1) - Te(2)	2.800(4)
$Te(2) - In(2_1)$	3.001(2)
$Te(1_{1}) - In(1)$	2.902(2)
$In(3_{1}) - Te(3)$	2.844(2)
Te(3) = In(4)	3.190(5)
10(5) 11(4)	5170(5)
In(3) - In(2) - In(1)	158.6 (1)
$Te(2_1) - In(2) - Te(2_2)$	95·4 (1)
$Te(2_1) - In(2) - In(3)$	97.2(1)
$Te(2_1) - In(2) - In(1)$	97·2 (1)
Te(3'') - In(2) - Te(3'')	77.8(1)
Te(3'') - In(2) - In(3)	87.8 (1)
Te(3'') - In(2) - In(1)	75.6 (1)
In(2) - In(1) - Te(2)	126.3(1)
$Te(1_1) - In(1) - Te(1_2)$	99.8 (1)
$Te(1_1) - In(1) - In(2)$	107.9 (1)
$Te(1_1) - In(1) - Te(2)$	105.9 (1)
$In(1) = Te(1_1) - In(3_1)$	98.3(1)
$T_{e(1,1)} = I_{e(1,1)} + I_{$	104.8 (1)
$Te(1_1) = In(3_1) = Te(3_1)$	101.2(1)
$I_{n}(2) = I_{n}(3) = I_{e}(3)$	1012(1) 121.6(1)
$In(2_1)$	102.7(1)
$In(3_1) = Ic(3) = Il(3_2)$ In(3_) Te(3) In(4)	80.6 (1)
$In(3_1) = Ic(3) = In(4)$ $In(2_1) = To(2_1) = In(4)$	09°0 (1)
$11(2_1) - 1 = (2) - 11(1)$	107.3(1)

 Table 4. Relevant interatomic distances (Å) with
 e.s.d.'s in parentheses

In-Te and In-In distances <4 Å and Te-Te distances <4.8 Å are given.

0	
In(4)In(4')	3·447 (5)
In(4)Te(1')	3·815 (4)
In(4)Te(1 ₁)	3·483 (3)
In(4)Te(2')	3·303 (3)
Te(3)—In(1')	3·924 (3)
Te(3)—In(2')	3·537 (3)
In(3 ₁)In(3')	3·889 (4)
In(2)In(4')	3·946 (4)
$Te(1_1) - Te(2_1) Te(1_1) - Te(1') Te(1_1) - Te(3) Te(1_1) - Te(2) $	4·072 (3) 4·665 (3) 4·437 (3) 4·552 (3)
Te(3)—Te(2')	4·219 (3)
Te(3)—Te(3')	4·492 (3)
Te(2)—Te(3')	4·761 (3)

by three indium atoms in an approximately tetrahedral configuration (Fig. 2) indicating that they exist in a state of sp^3 hybridization, each forming two ordinary covalent bonds and one donor bond with the three indium atoms and each carrying one lone pair. The end members of the In–In–In group [In(1), In(3)] are also situated in roughly tetrahedral cnordination with three tellurium atoms, again indicating sp^3 hybridization.

The coordination around the central indium atom in this group [In(2)] does not, however, correspond to any simple hybridization. If In(2) is regarded as *sp* hybridized the group would be linear but the In(1)-In(2)-In(3) bond angle of 158.6° is somewhat less than 180°. Conversely, if In(2) is *sp*³ hybridized the angle would be 109.5°. Under d^2sp^3 hybridization the angle would again be 180° with an octahedral arrangement of atoms around In(2), but whilst In(2) does indeed have six neighbours in a roughly octahedral array [In(1), In(3), Te(2₁), Te(2₂), Te(3₁''), Te(3₂'')] there are considerable variations in bond distances within this grouping. In particular the bonds to atoms Te(3₁') and Te(3₂'), which lie in the neighbouring sheet of atoms (Fig. 1), are some 0.5 Å longer than those to Te(2₁) and Te(2₂), a point noted by Likforman & Etienne (1972) in their discussion of the structure of In₄Se₃. On a covalent model this implies hybridization of In(2) some-

Fig. 1. In₄Te₃. A projection of the structure down c showing the method of bonding. The atoms are scaled to the respective ionic radii of In³⁺(0.81 Å) and Te²⁻ (2.22 Å). Shaded and non-shaded atoms lie on $z = \frac{1}{2}$ and 0 respectively. Atom numbers refer to Tables 2, 3 and 4.

Fig. 2. One of the centrosymmetrically related continuous sheets of atoms in the structure of In₄Te₃ (drawn by *ORTEP*, Johnson, 1965). Small circles are In atoms, large circles are Te atoms. The part of the structure shown covers 3 cell translations in **b** and 2.5 in **c**. Atom designations refer to Tables 2, 3 and 4.

where between these three extremes. It needs to be remembered, however, that the material is black and lustrous, which could imply a degree of metallic bonding as well.

The remaining indium atom, In(4), is surrounded by seven tellurium atoms at distances of 3.2 to 3.8 Å plus In(4') at 3.4 Å. This environment is consistent with the extreme ionic formulation In^+ for this indium atom.

A comparison of cell dimensions of In_4Te_3 and In_4Se_3 reveals that the *c* parameter in both cases is determined by the diameter of the appropriate anion Te^{2-} , Se^{2-} . However, neither the *a* nor *b* cell parameters of the two materials differ in proportion to the size of the anion, there being only a slight increase in these parameters from selenide to telluride. This small increase is adequately accounted for by the spatial rigidity of the $(In_3)^{5+}$ cation, which has the same configuration in both materials, plus the stabilizing influence of the tightly bound five membered In–Te/Se ring systems coupled with the changes in the (001) projected bond lengths.

The authors wish to thank Dr P. G. Nelson, Chemistry Department, Hull University, for advice concerning the bonding scheme, and the S.R.C. for the provision of a grant for the purchase of the Densitometer.

References

- FARQUHAR, M. C. M. & LIPSON, H. (1946). *Proc. Phys. Soc.* 58, 200–206.
- GROCHOWSKI, E. G., MASON, D. R., SCHMITT, G. A. & SMITH, P. H. (1964). J. Phys. Chem. Solids, 25, 551–558.
- Hogg, J. H. C., SUTHERLAND, H. H. & WILLIAMS, D. J. (1971). Chem. Commun. pp. 1568–1569.
- HOGG, J. H. C., SUTHERLAND, H. H. & WILLIAMS, D. J. (1973). Acta Cryst. B 29, 1590–1593.
- International Tables for X-ray Crystallography. (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KLEMM, W. & VOGEL, H. U. VON (1934). Z. Anorg. Allgem. Chem. 219, 45–64.
- LIKFORMAN, A. & ETIENNE, J. (1972). C. R. Acad. Sci. Paris, Sér. C, 275, 1097–1100.
- MAN, L. I. & SEMILITOV, S. A. (1965). Kristallografiya, 10, 407-409.
- SCHUBERT, K., DÖRE, E. & GÜNZEL, E. (1954). Naturwissenschaften, 41, 448.
- WILSON, A. J. C. (1942). Nature. Lond. 150, 151-152.